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Computational complexity is concerned with measuring the amount of re-
sources to compute a particular function. Non-uniform circuit complexity is
concerned with the number of logic gates of various types required in a circuit
which computes a given function. There are a few clear ways you’d generalize
this notion of complexity to circuits. For a given distribution P : {0, 1}n → [0, 1]
one might consider a circuit to compute this distribution if, upon receiving uni-
form inputs, the output distribution of the circuit matches the distribution of
P .

In this write-up, we’ll find another measurement of distribution complexity
which seems satisfying, and we’ll show its relationship to this notion. We’ll start
by some definitions.

Definition 1. For a distribution P : {0, 1}[n] → [0, 1] and a subset S ⊆ [n], we
can define the marginal of P on the indices in S, PS : {0, 1}S → [0, 1], as

PS(x) =
∑

y∈{0,1}[n]−S

P (x ∪ y)

One can show to themselves that this is a probability distribution, and that
it represents the random variables one would see by ”hiding” the indices not in
S.

Definition 2. We define the entropy of a distribution P : {0, 1}[n] → [0, 1] as

H(P ) =
∑

x∈{0,1}[n]

−P (x) log2(P (x))

Lemma 1. The uniform distribution on the support always maximizes entropy.

Definition 3. We say that distribution P : {0, 1}[n] → [0, 1] is k-local if

P = argmax
P0:{0,1}[n]→[0,1],

∑
x P0(x)=1∧∀S⊆[n],|S|=k⇒PS=PS

0

H(P0)

In other words, P is k-local if it is the maximum entropy distribution with
its given k-marginals.
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Now that we have this definition, its important to note that not all distri-
butions are k-local. The reader should validate their understanding by thinking
through the properties of 1-local distributions, which have a very familiar form.

A less obvious fact is that all distributions live inside of a distribution which
is k-local.

Lemma 2. For all k ≥ 2, distributions P : {0, 1}[n] → [0, 1] there exists a
distribution P ∗ such that P ∗S = P .

Proof. To prove this, we’ll construct what we’ll call a k-localization of P out of
marginal constraints which will define P ∗. If we can show that any distribution
having these marginals will contain P as a sub-distribution, we get for free that
the maximum entropy one contains it.

We’ll think of our indices now as random variables, with the original n as
X1, X2, ..., Xn, and an additional set of Y1 through Ym, where we’ll discover
what m needs to be later. We’ll divide the m new variables into chunks of k−1,
and for every possible binary assignment of these k− 1 sets of random variables

except for all zeros, we’ll assign a string x ∈ {0, 1}n. Thus, 2n ≤ m(2k−1−1)
k−1 ,

implying m ≥ 2n(k−1)
2k−1−1

. We’ll constrain these random variables using marginals
which ensure that the string we’ve assigned to x has the same probability of
occuring as P (x), and that the only possible value for all of the Xi allowed is
xi. This can be done with a k-marginal. Then, we constrain the two marginals
of each Yi, Yj in different subgroups so that one being 1 implies the other must
be zero.

Now, we can see that the Xi have the desired distribution, as the constraints
we’ve supplied so far imply it directly for every possible string x.

Definition 4. For k ≥ 2, define the k-localization complexity of P to be the
minimum m such that one can make a k-local distribution P ∗ which contains
P as a marginal. We say that P ∗ is a k-localization of P . We denote this as
Lk(P ).

Corrolary 1.

Lk(P ) ≤ 2n(k − 1)

2k−1 − 1

Now we’ve seen that k-localization complexity is well-defined for any dis-
tribution, one wonders how it compares to the circuit notion of distribution
complexity. It turns out, given a circuit computing a distribution with maxi-
mum gate fan-in k− 1, one can use similar tricks to above and turn that into a
k-localization of the distribution.

Definition 5. We’ll define the k-fan-in circuit complexity of a distribution P to
be the minimum size of circuit which has the same distribution as P in its output
when given the uniform distribution for its inputs. We denote this Ck(P ).

Lemma 3. For all k ≥ 2, distributions P , Lk(P ) ≤ Ck−1(P ).
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Proof. The way we can show this is by computing all of the k-marginals of
the gates of the circuit as well as the inputs, treating the gates as functions
depending on the input uniformly random variables, then using those marginals
to constrain our distribution, which includes a random variable for every gate.
Because the distribution we took those marginals from is uniform, this will be
the entropy maximizing distribution, and we know this distribution has our P
in its output gates by definition.

This shows that its at least as hard to construct a k-localization of P as it
is to construct a circuit of fan-in k − 1 computing it.

Lemma 4. Given a circuit C with fan-in k − 1 recognizing a set S, such that
C(x) = 1 if x ∈ S and C(x) = 0 if x /∈ S, we can construct a k-localization of
the uniform distribution on S. That is, Lk(US) ≤ Ck−1(S), where Ck−1 is the
k − 1 fan-in circuit complexity of recognizing S.

Proof. The proof is comparable to the previous one, but in this case we take
the distribution of the circuit given uniform random inputs in S. As the output
gate is 1 in all of those cases, we know that the marginals guarantee that every
configuration of the input gates is in S, and as the uniform distribution on
S satisfies those marginals, we know that must be the entropy maximizing
distribution.

This further cements that this model is more powerful than the deterministic
circuit model. Anything it can do, it seemingly can do by constraining the
gates and acheiving a uniform distribution with a nice description via marginal
constraints. What about non-deterministic circuits? Well, the first thing to note
is that a marginal is a constraint over a set of variables Xi, Xj , Xk. This is very
similar to a set of clauses over a set of variables Xi, Xj , Xk in the Satisfiability
problem.
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